Clintoniosides A – C, New Polyhydroxylated Spirostanol Glycosides from the Rhizomes of *Clintonia udensis*

by Yoshihiro Mimaki*^a) and Kazuki Watanabe^b)

^a) School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan

^b) Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1, Koubata, Aomori, Aomori 030-0943, Japan

Phytochemical analyses were carried out on the rhizomes of *Clintonia udensis* (Liliaceae) with particular attention paid to the steroidal glycoside constituents, resulting in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A (1), B (2), and C (3). On the basis of their spectroscopic data, including 2D-NMR spectroscopy, in combination with acetylation and hydrolytic cleavage, the structures of 1-3 were determined to be $(1\beta,3\beta,23S,24S,25R)-1,23,24$ -trihydroxyspirost-5-en-3-yl *O*- β -D-glucopyranosyl- $(1 \rightarrow 4)$ -*O*- $[\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 2)$]- β -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranoside (2), and $(1\beta,3\beta,23S,24S)$ -21-(acetyl-oxy)-24-[(6-deoxy- β -D-gulopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranoside (3).

Introduction. – *Clintonia udensis* TRAUTV. et C. A. MEY. is a perennial plant belonging to the family Liliaceae, and is distributed in northeast China, the Korean Peninsula, and Japan. The rhizomes of *C. udensis* have long been used in traditional Chinese medicine for the treatment of blow and fatigue [1], and a few steroidal sapogenins such as diosgenin and heloniogenin have been detected in the plant [2][3]. As part of our continuing investigation of plants of the family Liliaceae [4–8], a phytochemical analysis of the rhizomes of *C. udensis* was conducted, special attention being paid to the steroidal glycoside constituents, which resulted in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A (1), B (2), and C (3). This article reports the structure determination of the new compounds on the basis of their spectroscopic data, including 2D-NMR spectroscopy, in combination with acetylation and hydrolytic cleavage.

Results and Discussion. – The MeOH extract of *C. udensis* rhizomes was passed through a porous-polymer polystyrene resin (*Diaion HP-20*) column successively eluted with 30% MeOH, MeOH, EtOH, and AcOEt. The MeOH-eluate fraction was repeatedly subjected to column chromatography (silica gel and octadecylsilanized (ODS) silica gel), as well as to prep. HPLC, to give clintonioside A (1; 14.5 mg), B (2; 70 mg), and C (3; 20.0 mg).

Clintonioside A (1) was obtained as amorphous solid which exhibited an $[M + Na]^+$ peak at m/z 955.4451 in the HR-ESI-TOF-MS, consistent with the molecular formula

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

C₄₅H₇₂O₂₀. The glycosidic nature of **1** was suggested by strong absorption bands at 3378 and 1051 cm⁻¹ in the IR spectrum. Acid hydrolysis of **1** with 0.5M HCl in dioxane/H₂O 1:1 gave D-glucose and L-rhamnose, while the labile aglycone was decomposed under acidic conditions. Identification of the monosaccharides, including their absolute configurations, was carried out by direct HPLC analysis of the hydrolysate by using a combination of refractive-index (r.i.) and optical-rotation (o.r.) detectors. Interpretation of the ¹H- and ¹³C-NMR (*Table 1*), ¹H,¹H-COSY (*Fig. 1*), HMQC, TOCSY, HMBC (*Fig. 1*), and NOESY data (*Fig. 2*) of **1**, and acetylation of **1** with Ac₂O/pyridine 1:1 followed by spectroscopic analysis of the peracetate derivative allowed the structure of the aglycone moiety to be assigned as (1 β ,3 β ,23*S*,24*S*,25*R*)-spirost-5-ene-1,3,23,24-tetrol. These data are consistent with the structure (1 β ,3 β ,23*S*,24*S*,25*R*)-1,23,24-trihydroxyspirost-5-en-3-yl *O*- β -D-glucopyranosyl-(1 \rightarrow 4)-*O*-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranoside, which was given to clintonioside A (**1**).

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
H-C(1)	3.69 (dd, J = 11.9, 4.3)	77.9	Glc:		
CH ₂ (2)	$2.60 (dd, J = 11.9, 4.3, H_{eq}),$	40.8	H-C(1)	4.98 (d, J = 7.5)	100.1
	2.31 (q-kike, $J = 11.9$, H_{ax})		H-C(2)	4.20 (dd, J = 8.5, 8.1)	77.2
H-C(3)	$3.99 (m, w_{1/2} = 18.1)$	75.1	H-C(3)	4.23 (<i>t</i> -like, $J = 8.5$)	77.7
$CH_{2}(4)$	$2.75 (dd, J = 11.9, 4.9, H_{eq}),$	39.4	H-C(4)	4.21 (<i>t</i> -like, $J = 8.5$)	82.0
	2.80 (t-like, $J = 11.9$, H_{ax})		H-C(5)	3.83 (ddd, J = 8.5, 3.8, 2.5)	76.2
C(5)		139.0	$CH_2(6)$	$4.50 (dd, J = 12.1, 3.8, H_a),$	62.1
H-C(6)	5.50 (br. $d, J = 5.5$)	125.1		$4.38 (dd, J = 12.1, 2.5, H_b)$	
$CH_{2}(7)$	1.87 (H _{eq}), 1.53 (H _{ax})	32.3			
H-C(8)	1.54 - 1.62 (m)	32.8	Rha:		
H-C(9)	1.31 - 1.37 (m)	51.2	H-C(1)	6.25 (d, J = 1.3)	101.8
C(10)		43.7	H-C(2)	4.74 (dd, J = 3.2, 1.3)	72.5
$CH_{2}(11)$	$1.78 (H_{eq}), 1.26 (H_{ax})$	24.1	H-C(3)	4.59 (dd, J = 9.4, 3.2)	72.8
$CH_{2}(12)$	$2.86 (H_{eq}), 1.72 (H_{ax})$	40.8	H-C(4)	4.33 (<i>t</i> -like, $J = 9.4$)	74.1
C(13)		40.6	H-C(5)	4.95 (dq, J = 9.4, 6.2)	69.5
H - C(14)	1.11 - 1.17 (m)	56.8	Me(6)	1.71 (d, J = 6.2)	18.6
$CH_2(15)$	$2.00 (H_{a}), 1.45 (H_{\beta})$	32.3			
H - C(16)	4.63 (q-like, $J = 8.6$)	82.9	Glc':		
H - C(17)	1.81 (dd, J = 8.6, 7.1)	61.5	H-C(1)	5.12 (d, J = 7.9)	105.2
Me(18)	1.06 (s)	16.7	H-C(2)	4.05 (dd, J = 8.5, 7.9)	75.0
Me(19)	1.32 (s)	13.7	H-C(3)	4.20 (dd, J = 9.1, 8.5)	78.3
H - C(20)	2.93 - 2.99(m)	37.2	H-C(4)	4.27 (<i>t</i> -like, $J = 9.1$)	71.2
Me(21)	1.15 (d, J = 7.0)	14.5	H-C(5)	3.96 (ddd, J = 9.1, 5.8, 2.4)	78.5
C(22)		113.1	$CH_2(6)$	$4.46 (dd, J = 11.9, 2.4, H_a),$	61.8
H-C(23)	3.99(d, J = 3.6)	64.8		$4.38 (dd, J = 11.9, 5.8, H_b)$	
H - C(24)	4.13–4.15 (<i>m</i>)	73.8			
H-C(25)	2.06 - 2.10 (m)	37.9			
$CH_{2}(26)$	3.33 (br. $d, J = 11.2, H_{eq}$),	59.7			
	4.42 $(dd, J = 11.2, 2.1, \dot{H}_{ax})$				
Me(27)	1.09 (d, J = 7.4)	15.6			

Table 1. ¹*H*- and ¹³*C*-*NMR Data* (500 and 125 MHz, resp.; (D₅)pyridine) of Clintonioside A (1). δ in ppm, J in Hz.

The ¹H-NMR spectrum of **1** displayed two s at $\delta(H)$ 1.32 and 1.06 (each 3 H), indicating the presence of two angular Me groups, two d at δ (H) 1.15 (J=7.0 Hz, 3 H) and 1.09 (J=7.4 Hz, 3 H) assignable to secondary Me groups, and an olefinic H-atom at $\delta(H)$ 5.50 (br. d, J=5.5 Hz), as well as signals for three anomeric H-atoms at δ (H) 6.25 (d, J=1.3 Hz), 5.12 (d, J=7.9 Hz), and 4.98 (d, J= 7.5 Hz). The Me signals at $\delta(H)$ 1.71 (d, J=6.2 Hz) and $\delta(C)$ 18.6 were indicative of a 6deoxyhexopyranosyl unit. These data, along with those of the three anomeric C-atoms (δ (C) 105.2 (CH), 101.8 (CH), and 100.1 (CH)) and of one distinctive acetal C-atom (δ (C) 113.1 (C)) [9] led to the hypothesis that **1** is a spirostanol glycoside with three monosaccharide units. The ¹³C-NMR spectrum of **1** (Table 1) showed a total of 45 resonance lines, 18 of which were attributed to the three monosaccharide units. This implied a molecular formula C₂₇H₄₂O₆ for the aglycone moiety, suggesting a highly oxygenated spirostanol derivative. In the ¹H,¹H-COSY plot of **1**, the *m* centered at δ (H) 3.99 ($w_{1/2}$ = 18.1 Hz, H-C(3)) was coupled to the signals of two CH_2 groups at $\delta(H)$ 2.80 (*t*-like, J = 11.9 Hz, $H_{ax}-C(4)$) and 2.75 (dd, J = 11.9, 4.9 Hz, $H_{ea} - C(4)$), and at $\delta(H) 2.60$ (dd, J = 11.9, 4.3 Hz, $H_{ea} - C(2)$) and 2.31 (q-like, J = 11.9 Hz, H_{ax} – C(2)). The CH₂(2) signals exhibited ¹H,¹H-spin coupling with the dd of an oxygenated CH moiety at $\delta(H)$ 3.69 (J=11.9, 4.3 Hz, H-C(1)), while the CH₂(4) signals showed no additional correlations. In the HMBC plot, the Me group at $\delta(H)$ 1.32 (Me(19)) showed long-range correlations

Fig. 1. ¹H,¹H-COSY (bold lines) and HMBC (arrows) of the aglycone moiety of 1

Fig. 2. NOE Correlations of the aglycone moiety of 1

with not only its linked C-atom at $\delta(C)$ 43.7 (C(10)) but also with the oxygenated CH moiety at $\delta(C)$ 77.9 (C(1)) and the olefinic C-atom at δ (C) 139.0 (C(5)). On the other hand, the olefinic H-atom at δ (H) 5.50 (H-C(6)) exhibited long-range correlations with the CH₂ moiety at $\delta(C)$ 39.4 (C(4)) and the olefinic C(5). These findings indicated the presence of an O-atom at C(1) and C(3), a C=C bond between C(5)and C(6), and a Me group at C(10). The ¹H, ¹H-COSY (Fig. 1) and 2D-TOCSY cross-peaks were analyzed starting with the olefinic H–C(6) and Me(21) (δ (H) 1.15 (d, J=7.0 Hz)). In the HMBC spectrum, the cross-peaks $\delta(H)$ 1.06 (Me(18))/ $\delta(C)$ 40.6 (C(13)), 40.8 (C(12)), 56.8 (C(14)), and 82.9 (C(17)) were present (Fig. 1). These data led to the construction of the rings B-E, with a Me group at C(13). The ring-F portion was established as follows: Me(27) at δ (H) 1.09 (J=6.8 Hz) showed ¹H,¹Hspin-coupling with H–C(25) (br. m at δ (H) 2.06–2.10). Me(27) also exhibited correlations with the oxygenated CH₂ moiety at δ (H) 4.42 (*dd*, *J*=11.2, 2.1 Hz, H_{ax}-C(26)) and 3.33 (br. *d*, *J*=11.2 Hz, H_{eq} -C(26)) and with the oxygenated CH group at δ (H) 4.13-4.15 (m, H-C(24)). H-C(24), in turn, displayed a correlation with another oxygenated CH moiety at $\delta(H)$ 3.99 (d, J=3.6 Hz, H-C(23)). These subsequent correlations allowed the ring-F fragment of 1 to be assigned as -CH(23)(O-)-CH(24)(O-)-CH(25)(Me(27))-CH₂(26)-O-. The HMBC cross-peaks C(22) $(\delta(C) 113.1/H-C(20), Me(21), H-C(23), H-C(24), and H_{eq}-C(26)$ suggested that ring E is linked to ring F via the acetal atom C(22).

In the phase-sensitive NOESY experiment, the correlations H-C(8)/Me(18) and Me(19), H-C(14)/H-C(9), H-C(16), and H-C(17), H-C(17)/H-C(16) and Me(21), and Me(18)/H-C(20) provided evidence for the usual steroid ring fusions (*B/C trans, C/D trans, and D/E cis*) and the (20*a*) configuration (*Fig.* 2). The β -equatorial orientations at C(1) and C(3) were revealed by the coupling constants of H-C(1) (*dd, J*=11.9, 4.3 Hz) and H-C(3) (*m, w*_{1/2}=18.1 Hz), and were supported by the NOEs H-C(1)/H-C(3) and H-C(9). The NOEs $H-C(16)/H_{ax}-C(26)$, H-C(23)/H-C(20), Me(21), H-C(24), and Me(27), and H-C(24)/H-C(23), H-C(25), and Me(27), in addition

C(4)(Glc) established the linkages between the sugar units and their linkage to the aglycone.

Clintonioside B (2), obtained as an amorphous solid, exhibited a molecular formula $C_{44}H_{68}O_{20}$ as deduced from the HR-ESI-TOF-MS (m/z 939.4272 ($[M + Na]^+$)). The ¹H- and ¹³C-NMR spectra of 2 (*Table 2*) were similar to those of 1; however, slight differences could be recognized in the signals arising from both the aglycone and sugar moieties. Acid hydrolysis of 2 with 0.5M HCl in dioxane/H₂O 1:1 gave D-xylose, D-glucose, and L-rhamnose. Comparison of the NMR data of 2 with those of 1 and the polyoxygenated steroidal saponins from *Helleborus orientalis* [10], and analysis of the ¹H, ¹H-COSY, HMQC, HMBC (*Fig. 3*), and NOESY data (*Fig. 3*) of 2 allowed the structure of the aglycone of 2 to be identified as (1β , 3β ,23S,24S)-spirosta-5,25(27)-diene-1,3,21,23,24-pentol. The structure of 2 was finally established as (1β , 3β ,23S,24S)-3,21,23,24-tetrahydroxyspirosta-5,25(27)-dien-1-yl O- α -L-rhamnopyranosyl-($1 \rightarrow 2$)-O-[β -D-xylopyranosyl-($1 \rightarrow 3$)]- β -D-glucopyranoside.

In the ¹H-NMR spectrum of **2**, the ds of the two secondary Me groups of **1** at δ (H) 1.15 and 1.09 were replaced by the signals of a CH₂OH (δ (H) 4.20 (dd, J = 10.5, 6.9 Hz) and 4.02 – 4.06 (m)) and an exocyclic $CH_2=C$ group ($\delta(H)$ 5.06 and 4.96 (each br. s)). The CH_2OH group showed ¹H,¹H-spin couplings with H-C(20) at $\delta(H)$ 3.44 (q-like, J=6.9 Hz) in the ¹H,¹H-COSY plot, and a long-range correlation with the acetal atom C(22) at δ (C) 112.3 in the HMBC spectrum (*Fig. 3*). The H-atom of the CH₂=C group at δ (H) 5.06 showed long-range correlations with the olefinic C(25) at δ (C) 146.3 and the OH-substituted C(24) at δ (C) 74.1, whereas the H-atom of the CH₂=C group at δ (H) 4.96 was correlated with C(25) and the oxygenated C(26) at δ (C) 60.7. HMBC Cross-peaks C(22)/H-C(20), H-C(23) (δ (H) 4.42), H–C(24) (δ (H) 4.69), and H_{eq}–C(26) (δ (H) 4.02) were also observed. Thus, the presence of an OH group at C(21) and the C(25)=CH₂(27) bond in 2 was established. The NOE correlations H-C(16)/ $H_{ax}-C(26)$, H-C(20)/Me(18) and H-C(23), and H-C(23)/H-C(24), as well as a small J(H-C(23), H-C(24))H–C(24)) (4.0 Hz) are consistent with the (20a, 22a, 23S, 24S) configuration. The δ (C) of C(1) of **1** was moved downfield by 6.4 ppm to $\delta(C)$ 84.3 in **2**, whereas that of C(3) was displaced upfield by 7.0 ppm to δ (C) 68.1, suggesting that a triglycoside group is linked to C(1) of the aglycone of 2. The ¹H- and ¹³C-NMR data and the results of the acid hydrolysis indicated that the glycoside moiety of **2** is composed of a terminal α -L-rhamnopyranosyl unit (Rha), a terminal β -D-xylopyranosyl unit (Xyl), and a 2,3disubstituted β -D-glucopyranosyl unit (Glc). Their linkages were established by the HMBC cross-peaks H-C(1)(Rha)/C(2)(Glc), H-C(1)(Glc)/C(1)(aglycone), and H-C(1)(Xyl)/C(3)(Glc).

Clintonioside C (3) gave an $[M + Na]^+$ ion peak at m/z 1127.4843 in the HR-ESI-TOF-MS, indicating that 3 has a molecular formula $C_{52}H_{80}O_{25}$. The spectral data of 3 were essentially analogous those of 2, suggesting the presence of the same aglycone, except for an additional acetyl group. Comparison of the NMR data of 3 (*Table 3*) with those of the structurally related saponins from *Helleborus orientalis* [10], and interpretation of the ¹H,¹H-COSY, HMQC, TOCSY, HMBC, and NOESY data of 3, combined with the results of acid hydrolysis followed by chromatographic analysis

Table 2. ¹ H- and ¹³ C-NMR Data (500 and 125 MHz, resp.; (D ₅	())pyridine) of Clintonioside B (2). δ in
ppm, J in Hz.	

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
H-C(1)	3.84 (dd, J = 12.0, 4.0)	84.3	Glc:		
$CH_2(2)$	2.64 $(dd, J = 12.0, 4.0, H_{eq}),$	37.8	H-C(1)	4.77 (d, J = 7.7)	100.0
	2.41 (q-like, $J = 12.0$, H_{ax})		H-C(2)	4.12 (dd, J = 9.1, 7.7)	76.2
H-C(3)	$3.76 (m, w_{1/2} = 21.7)$	68.1	H-C(3)	$4.03 \ (t-like, J=9.1)$	88.4
$CH_{2}(4)$	2.52 (dd , $J = 12.0$, 4.8, H_{eq}),	43.7	H-C(4)	3.76 - 3.80 (m)	70.2
	2.65 (<i>t</i> -like, $J = 12.0$, H_{ax})		H-C(5)	3.75 - 3.79(m)	77.7
C(5)		139.3	$CH_{2}(6)$	4.45 (br. $d, J = 10.5, H_a$),	63.2
H-C(6)	5.52 (br. $d, J = 5.8$)	124.7		$4.16 (dd, J = 10.5, 4.6, H_b)$	
$CH_{2}(7)$	1.84 (H _{eq}), 1.52 (H _{ax})	31.8			
H-C(8)	1.51 - 1.59(m)	33.1	Rha:		
H-C(9)	1.60 - 1.66 (m)	50.2	H-C(1)	6.40 (br. s)	101.6
C(10)		42.7	H-C(2)	4.79 (br. $d, J = 3.3$)	72.4
$CH_{2}(11)$	2.84 (H _{eq}), 1.63 (H _{ax})	24.1	H-C(3)	4.58 (dd, J = 9.1, 3.3)	72.4
$CH_{2}(12)$	$1.95 (H_{eq}), 1.52 (H_{ax})$	40.4	H-C(4)	4.30 (dd, J = 9.5, 9.1)	74.1
C(13)		40.9	H-C(5)	4.81 (dq, J = 9.5, 6.1)	69.5
H - C(14)	1.22 - 1.28 (m)	57.1	Me(6)	1.71 (d, J = 6.1)	19.2
$CH_2(15)$	$1.95 (H_{\alpha}), 1.47 (H_{\beta})$	32.4			
H - C(16)	4.59 (q-like, $J = 8.6$)	83.6	Xyl:		
H-C(17)	2.04 (dd, J = 8.6, 6.9)	58.0	H-C(1)	4.93 (d, J = 7.7)	105.2
Me(18)	1.15 (s)	17.1	H-C(2)	3.96 (dd, J = 8.4, 7.7)	74.7
Me(19)	1.36 (s)	15.0	H-C(3)	4.10 - 4.14 (m)	78.3
H - C(20)	3.44 (q-like, J=6.9)	45.9	H-C(4)	4.10 - 4.14 (m)	70.6
CH ₂ (21)	$4.20 (dd, J = 10.5, 6.9, H_a),$	62.2	$CH_{2}(5)$	$4.24 (dd, J = 10.5, 4.4, H_a),$	67.2
2. /	$4.02 - 4.06 (m, H_b)$			$3.68 (t-like, J = 10.5, H_b)$	
C(22)		112.3			
H-C(23)	4.42 (d, J = 4.0)	71.1			
H-C(24)	4.69 (d, J = 4.0)	74.1			
C(25)		146.3			
CH ₂ (26)	4.02 $(d, J = 12.2, H_{eq}),$	60.7			
	4.85 $(d, J = 12.2, H_{ax})$				
CH ₂ (27)	$5.06 (br. s, H_a), 4.96 (br. s, H_b)$	112.4			

Fig. 3. Key HMBC (arrows) and NOE correlations (dotted lines) of the aglycone moiety of 2

 $(\rightarrow 6$ -deoxy-D-gulose, D-glucose, L-rhamnose, and D-xylose), established the structure of **3** as $(1\beta,3\beta,23S,24S)$ -21-(acetyloxy)-24-[(6-deoxy- β -D-gulopyranosyl)oxy]-3,23-di-

hydroxyspirosta-5,25(27)-diene-1-yl $O-\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -O- $[\beta$ -D-xylopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranoside.

ppin, o in the						
	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$	
H-C(1)	3.81 (dd, J = 12.0, 4.0)	84.7	Glc:			
$CH_{2}(2)$	2.65 $(dd, J = 12.0, 4.0, H_{eq}),$	38.0	H-C(1)	4.75 (d, J = 7.7)	100.3	
	2.42 (q-like, $J = 12.0, H_{ax}$)		H-C(2)	4.11 (dd, J = 8.8, 7.7)	76.1	
H-C(3)	$3.77 (m, w_{1/2} = 19.9)$	68.0	H-C(3)	$4.02 \ (t-like, J=8.8)$	88.4	
$CH_2(4)$	2.54 $(dd, J = 11.6, 4.2, H_{eq}),$	43.7	H-C(4)	3.81 (dd, J = 9.1, 8.8)	70.0	
	2.67 (t-like, $J = 11.6$, H_{ax})		H-C(5)	3.76 (ddd, J = 9.1, 5.5, 1.8)	77.6	
C(5)		139.4	$CH_2(6)$	$4.47 (dd, J = 11.5, 1.8, H_a),$	63.1	
H-C(6)	5.54 (br. $d, J = 5.7$)	124.7		$4.20 (dd, J = 11.5, 5.5, H_b)$		
$CH_2(7)$	$1.78 (H_{eq}), 1.51 (H_{ax})$	31.7				
H-C(8)	1.41 - 1.49(m)	33.0	Rha:			
H-C(9)	1.59 - 1.65(m)	50.2	H-C(1)	6.38 (br. <i>s</i>)	101.6	
C(10)		42.7	H-C(2)	4.76 (br. $d, J = 3.3$)	72.3	
$CH_{2}(11)$	$2.90 (H_{eq}), 1.61 (H_{ax})$	24.0	H-C(3)	4.58 (dd, J = 9.4, 3.3)	72.3	
$CH_{2}(12)$	$1.85 (H_{eq}), 1.47 (H_{ax})$	39.9	H-C(4)	4.29 (<i>t</i> -like $J = 9.4$)	74.2	
C(13)		41.0	H-C(5)	4.80 (dq, J = 9.4, 6.2)	69.5	
H - C(14)	1.12–1.18 (<i>m</i>)	57.0	Me(6)	1.70 (d, J = 6.2)	19.2	
$CH_2(15)$	$1.81 (H_a), 1.44 (H_b)$	32.3				
H - C(16)	4.53 (q-like, $J = 8.6$)	83.6	Xyl:			
H - C(17)	1.85 (dd, J = 8.6, 6.0)	58.6	H-C(1)	4.92 (d, J = 7.6)	105.2	
Me(18)	1.05 (s)	16.8	H-C(2)	3.95 (dd, J = 9.1, 7.6)	74.7	
Me(19)	1.38 (s)	15.0	H-C(3)	4.08 - 4.12 (m)	78.3	
H - C(20)	3.22-3.28 (<i>m</i>)	42.6	H-C(4)	4.09–4.13 (<i>m</i>)	70.5	
CH ₂ (21)	$4.38 (dd, J = 10.6, 8.9, H_a),$	65.0	$CH_{2}(5)$	$4.24 (dd, J = 11.2, 4.3, H_a),$	67.2	
	4.33 (dd , $J = 10.6$, 6.5, H_b)			$3.67 (t-like, J = 11.2, H_b)$		
C(22)		111.0				
H-C(23)	4.14 (d, J = 4.1)	71.4	6-deoxy-Gul:			
H - C(24)	4.76 (d, J = 4.1)	82.1	H-C(1)	5.68 (d, J = 8.2)	103.9	
C(25)		143.6	H-C(2)	4.54 (dd, J = 8.2, 3.0)	70.3	
$CH_{2}(26)$	$3.98 (d, J = 12.1, H_{eq}),$	61.5	H-C(3)	4.74 (dd, J = 3.5, 3.0)	73.5	
	$4.84 (d, J = 12.1, H_{ax})$		H-C(4)	4.09 (br. $d, J = 3.5$)	73.4	
CH ₂ (27)	5.22 (br. s , H_a), 5.09 (br. s , H_b)	113.9	H-C(5)	4.54 (q-like, $J = 6.5$)	69.9	
Ac	1.95 (s)	170.8, 20.9	Me(6)	$1.46 \ (d, J = 6.5)$	16.8	

Table 3. ¹*H*- and ¹³*C*-*NMR Data* (500 and 125 MHz, resp.; (D₅)pyridine) of Clintonioside C (3). δ in ppm. *J* in Hz.

The molecular formula of **3** was higher than that of **2** by $C_8H_{12}O_5$, and the ¹H-NMR spectrum of **3** showed four anomeric H-atoms at $\delta(H)$ 6.38 (br. *s*), 5.68 (*d*, *J* = 8.2 Hz), 4.92 (*d*, *J* = 7.6 Hz), and 4.75 (*d*, *J* = 7.7 Hz), as well as two secondary Me groups at $\delta(H)$ 1.70 (*d*, *J* = 6.2 Hz) and 1.46 (*d*, *J* = 6.5 Hz), suggesting that **3** structurally corresponded to **2** with two instead of one 6-deoxyhexosyl group. The presence of an Ac group was inferred from the IR (1720 cm⁻¹) and NMR data ($\delta(H)$ 1.95 (*s*, 3 H); $\delta(C)$ 170.8 and 20.9).

The ¹H,¹H-COSY and TOCSY data established the ¹H,¹H-spin-coupling correlations and multiplet patterns of the additional 6-deoxyhexosyl H-atoms which exhibited a large J(H-C(1), H-C(2)) (8.2 Hz), a small J(H-C(2), H-C(3)) (3.0 Hz) and J(H-C(3), H-C(4)) (3.5 Hz), and a very small J(H-C(4), H-C(5)) (<0.5 Hz). The H-atoms of the additional 6-deoxyhexosyl unit were correlated to the one-bond coupled C-atoms in the HMQC spectrum, resulting in the assignments of C(1)-C(6) to

 δ (C) 103.9, 70.3, 73.5, 73.4, 69.9, and 16.8, resp. The acid hydrolysis of **3** suggested that the 6-deoxyhexose was 6-deoxy- β -D-gulopyranose (6-deoxy-Gul). In the HMBC spectrum, a cross-peak H–C(1)(6-deoxy-Gul)/C(24)(aglycone) confirmed that the deoxysugar is linked to C(24). The triglycoside moiety attached at C(1) of the aglycone was shown to be the same as that of **2** by the HMBC cross-peaks H–C(1)(Rha)/C(2)(Glc), H–C(1)(Xyl)/C(3)(Glc), and H–C(1)(Glc)/C(1)(aglycone). The position of the acetyl group was determined by the HMBC cross-peaks C=O(Ac)/CH₂(21)(aglycone).

Clintoniosides A-C (1-3) are new polyhydroxylated spirostanol saponins. Although a number of steroidal glycosides have been isolated from higher plants [11], several polyhydroxylated spirostanol saponins structurally related to clintoniosides A-C have been detected in a limited species of the monocotyledonous plants such as in Ornithogalum thyrsoides (Liliaceae) [12], Polygonatum sibiricum (Liliaceae) [13], Dracaena draco (Agavaceae) [14], Ruscus aculeatus (Liliaceae) [15], Brodiaea californica (Liliaceae) [16], Sansevieria trifasciata (Agavaceae) [17], Nolina recurvata (Agavaceae) [18], and Ophiopogon japonicus (Liliaceae) [19], except for those isolated from Helleborus orientalis, a dicotyledonous plant belonging to the Ranunculaceae family [10].

Experimental Part

General. TLC: precoated silica-gel 60- F_{254} (SiO₂, 0.25 mm; *Merck*, Darmstadt, Germany), and *RP*-18- F_{254} -S (0.25 mm; *Merck*) plates; visualization by spraying with 10% H₂SO₄ soln., followed by heating. Column chromatography (CC): *Diaion HP-20* (*Mitsubishi-Chemical*, Tokyo, Japan), SiO₂ (*Fuji-Silysia Chemical*, Aichi, Japan), and ODS SiO₂ (*Nacalai Tesque*, Kyoto, Japan). Anal. HPLC: *CCPM* pump (*Tosoh*, Tokyo, Japan), *CCP-PX-8010* controller (*Tosoh*), *RI-8010* detector (*Tosoh*), *Shodex-OR-2* detector (*Showa-Denko*, Tokyo, Japan), and *Rheodyne* injection port; t_R in min; r.i. = refractive index, o.r. = optical rotation. Prep. HPLC: *Capcell-Pak-C*₁₈-*UG120* column (10 mm i.d. × 250 mm, 5 µm; *Shiseido*, Tokyo, Japan); flow rate 1.0 ml/min; t_R in min. Optical rotations: *Jasco DIP-360* (Tokyo, Japan) automatic digital polarimeter. IR Spectra: *Jasco FT-IR 620* spectrophotometer; ν in cm⁻¹. NMR Spectra: *Bruker DRX-500* spectrometer (Karlsruhe, Germany); at 500 (¹H) or 125 MHz (¹³C); standard *Bruker* pulse programs; (D₅)pyridine solns.; chemical shifts δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. MS: *Micromass-LCT* spectrometer (*Waters*, Manchester, UK); in *m/z*.

Plant Material. The rhizomes of *C. udensis* were collected in Yunnan Province, P. R. China, in October 1999. The plant was identified by Dr. *Yutaka Sashida*, emer. professor of Tokyo University of Pharmacy and Life Sciences. A voucher specimen was deposited with our laboratory (voucher No. 99-10-011-CU).

Extraction and Isolation. The rhizomes of *C. udensis* (1.0 kg of dry weight) was extracted with MeOH (91) under reflux for 3 h. After the removal of the solvent, the MeOH extract (150 g) was subjected to CC (*Diaion HP-20* (1.6 kg), 80.0 mm i.d. × 400 mm column), 30% MeOH, MeOH, EtOH, and then AcOEt (each 101)). The MeOH-eluted portion (51.0 g) was subjected to CC (SiO₂ (1.0 kg), 80 mm i.d. × 300 mm column, stepwise gradient CHCl₃/MeOH 9 :1, 6 :1, 4 :1, 2 :1, and 0 :1 (each 2 1)): *Fractions I – VI. Fr. VI* was subjected by prep. HPLC (MeCN/H₂O 1:2) to give **1–3** with a few impurities, which were further purified by prep. HPLC (MeCN/H₂O 1:3): **1** (14.5 mg; t_R 82–85), **2** (7.0 mg; t_R 72–74), and **3** (20.0 mg; t_R 60–62).

Clintonioside A (=(1β , 3β ,23S,24S,25R)-1,23,24-Trihydroxyspirost-5-en-3-yl O- β -D-Glucopyranosyl-($1 \rightarrow 4$)-O-[α -L-rhamnopyranosyl-($1 \rightarrow 2$)]- β -D-glucopyranoside = (1β , 3β ,23S,24S,25R)-1,23,24-Trihydroxyspirost-5-en-3-yl O-6-Deoxy- α -L-mannopyranosyl-($1 \rightarrow 2$)-O-[β -D-glucopyranosyl-($1 \rightarrow 4$)]- β -D-glucopyranoside; **1**). Amorphous solid. [α]_D²² = -92.0 (c = 0.10, MeOH). IR (film): 3378 (OH), 2967 and 2909 (CH), 1447, 1374, 1269, 1051, 976, 903. ¹H- and ¹³C-NMR: Table 1. HR-ESI-TOF-MS (pos.): 955.4451 ([M + Na]⁺, C₄₅H₇₂O₂₀Na⁺; calc. 955.4515).

Acid Hydrolysis of Clintonioside A (1). A soln. of 1 (2.0 mg) in 0.5M HCl in dioxane/H₂O 1:1 (3 ml) was heated at 95° for 1 h under Ar. After cooling, the mixture was neutralized by passage through an *Amberlite-IRA-93ZU* (Organo, Tokyo, Japan) column and then subjected to CC (*Diaion HP-20*, 40% MeOH, then Me₂CO/EtOH 1:1) to give an aglycone fraction and a sugar fraction. TLC Analysis of the aglycone fraction revealed several unidentified artifactual sapogenols. After the sugar fraction was passed through a *Sep-Pak-C₁₈* cartridge (*Waters*, Milford, MA, USA; with 40% MeOH) and a *Toyopak-IC-SP-M* cartridge (*Tosoh*; with 40% MeOH), it was analyzed by HPLC (*Capcell-Pak-NH₂-UG80* column (4.6 mm i.d. × 250 mm, 5 µm; *Shiseido*), MeCN/H₂O 17:3, flow rate 1.0 ml/min, r.i. and o.r. detection): $t_{\rm R}$ 6.06 (L-rhamnose; neg. o.r.); 12.92 (D-glucose; pos. o.r.).

Acetylation of Clintonioside A (1). Compound 1 (2.0 mg) was treated with Ac₂O/pyridine 1:1 (2 ml) in the presence of *N*,*N*-dimethylpyridin-4-amine (2.0 mg) as catalyst at r.t. for 20 h. The mixture was subjected to CC (SiO₂, hexane/AcOEt 2:3): 1.7 mg of *clintonioside A dodecaacetate*. Amorphous solid. $[\alpha]_D^{24} = -50.0 \ (c = 0.10, \text{MeOH})$. IR (film): 2929 (CH), 1745 (C=O), 1443, 1373, 1237, 1128, 1045, 923, 837. ¹H-NMR: 5.80 (br. *s*, H–C(1'')); 5.70 (br. *d*, *J* = 4.5, H–C(6)); 5.49–5.47 (*m*, H–C(24)); 5.12 (*d*, *J* = 8.0, H–C(1''')); 4.95 (*dd*, *J* = 11.5, 4.0, H–C(1)); 4.86 (*d*, *J* = 7.8, H–C(1')); 4.78 (*d*, *J* = 3.7, H–C(23)); 4.42 (*dd*, *J* = 11.3, 2.3, H_{ax}–C(26)); 4.00–3.92 (*m*, H–C(3)); 3.33 (br. *d*, *J* = 11.3, H_{eq}–C(26)); 2.41, 2.19 (2×), 2.18, 2.12, 2.11 (2×), 2.04, 2.03, 2.02, 1.99 (2×) (12s, 12 MeCO); 1.46 (*d*, *J* = 6.2, Me(6'')); 1.31 (*s*, Me(19)); 1.16 (*d*, *J* = 6.4, Me(21)); 1.14 (*d*, *J* = 7.0, Me(27)); 0.88 (*s*, Me(18)).

Clintonioside B (= (1β , 3β ,23S,24S)-3,21,23,24-Tetrahydroxyspirosta-5,25(27)-dien-1-yl O- α -L-Rhamnopyranosyl-($1 \rightarrow 2$)-O-[β -D-xylopyranosyl-($1 \rightarrow 3$)]- β -D-glucopyranoside = (1β , 3β ,23S,24S)-3,21,23,24-Tetrahydroxyspirosta-5,25(27)-dien-1-yl O-6-Deoxy- α -L-mannopyranosyl-($1 \rightarrow 2$)-O-[β -D-xylopyranosyl-($1 \rightarrow 3$)]- β -D-glucopyranoside; **2**). Amorphous solid. [α]_D² = -66.0 (c = 0.10, MeOH). IR (film): 3379 (OH), 2920 and 2849 (CH), 1444, 1373, 1254, 1048, 957, 922. ¹H- and ¹³C-NMR: Table 2. HR-ESI-TOF-MS (pos.): 939.4272 ([M + Na]⁺, C₄₄H₆₈O₂₀Na⁺; calc. 939.4202).

Acid Hydrolysis of Clintonioside B (2). Compound 2 (1.5 mg) was subjected to acid hydrolysis as described for 1: sugar fraction (0.7 mg). HPLC Analysis (see above) showed the presence of D-glucose, L-rhamnose, and D-xylose; t_R 6.60 (L-rhamnose; neg. o.r.); 8.30 (D-xylose; pos. o.r.); 12.87 (D-glucose; pos. o.r.).

Clintonioside C (=(1 β ,3 β ,23S,24S)-21-(Acetyloxy)-24-[(6-deoxy- β -D-gulopyranosyl)oxy]-3,23-dihydroxyspirosta-5,25(27)-dien-1-yl O- α -L-Rhamnopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]- β -D-gulopyranoside = (1 β ,3 β ,23S,24S)-21-(Acetyloxy)-24-[(6-deoxy- β -D-gulopyranosyl)oxy]-3,23-dihydroxyspirosta-5,25(27)-dien-1-yl O-6-Deoxy- α -L-mannopyranosyl-(1 \rightarrow 2)-O-[β -D-xylopyranosyl-(1 \rightarrow 3)]- β -D-gulopyranoside; **3**). Amorphous solid. [α]_D²⁵ = -64.0 (c = 0.10, MeOH). IR (film): 3398 (OH), 2921 (CH), 1720 (C=O), 1444, 1374, 1257, 1048, 990, 921. ¹H- and ¹³C-NMR: Table 3. HR-ESI-TOF-MS (pos.): 1127.4843 ([M + Na]⁺, C₅₂H₈₀O₂₅Na⁺; calc. 1127.4886).

Acid Hydrolysis of Clintonioside C (3). Compound 3 (5.3 mg) was subjected to acid hydrolysis as described for 1: sugar fraction (1.5 mg). HPLC Analysis (see above) showed the presence of D-glucose, L-rhamnose and/or 6-deoxy-D-gulose, and D-xylose; t_R 6.58 (L-rhamnose and/or 6-deoxy-D-gulose; neg. o.r.); 8.29 (D-xylose; pos. o.r.); 12.90 (D-glucose; pos. o.r.).

Acid Hydrolysis of Clintonioside C (3) for the Identification of L-Rhamnose and 6-Deoxy-D-gulose. A soln. of 3 (5.2 mg) in 0.2M HCl in MeOH/H₂O 1:1 (3 ml) was heated at 65° for 2.5 h under Ar. After cooling, the mixture was neutralized by passage through an *Amberlite-IRA-93ZU* column (*Organo*), and fractionated by using a *Sep-Pak-C₁₈* cartridge (*Waters*; with 10% MeOH): a sugar fraction (0.8 mg). The sugar fraction was analyzed by HPLC (*Capcell-Pak-C₁₈-AQ* column (4.6 mm i.d. × 250 mm, 5 µm; *Shiseido*), H₂O, flow rate 1.0 ml/min, r.i. and o.r. detection): t_R 10.66 (methyl 6-deoxy- α -D-guloside; pos. o.r.); 12.09 (methyl β -L-rhamnoside; pos. o.r.); 12.43 (methyl 6-deoxy- β -D-guloside; neg. o.r.); 14.88 (methyl α -L-rhamnoside; neg. o.r.).

REFERENCES

- 'Dictionary of Chinese Medicinal Materials', Shanghai Scientific and Technological Press, Shanghai, 1999, Vol. 8, p. 78.
- [2] T. Okanishi, A. Akahori, F. Yasuda, Y. Takeuchi, T. Iwao, Chem. Pharm. Bull. 1975, 23, 575.

- [3] K. Takeda, T. Okanishi, A. Shimaoka, Yakugaku Zasshi 1956, 76, 445.
- [4] Y. Mimaki, T. Aoki, M. Jitsuno, C. S. Kiliç, M. Coşkun, *Phytochemistry* 2008, 69, 729.
- [5] T. Higano, M. Kuroda, M. Jitsuno, Y. Mimaki, Nat. Prod. Commun. 2007, 2, 531.
- [6] A. Yokosuka, Y. Mimaki, Nat. Prod. Commun. 2007, 2, 35.
- [7] M. Kuroda, Y. Mimaki, K. Ori, H. Sakagami, Y. Sashida, J. Nat. Prod. 2004, 67, 2099.
- [8] M. Kuroda, Y. Mimaki, K. Ori, H. Sakagami, Y. Sashida, J. Nat. Prod. 2004, 67, 1696.
- [9] P. K. Agrawal, *Phytochemistry* **1992**, *31*, 3307.
- [10] K. Watanabe, Y. Mimaki, H. Sakagami, Y. Sashida, J. Nat. Prod. 2003, 66, 236.
- [11] 'Saponins Used in Traditional and Modern Medicine', Eds. G. R. Waller and K. Yamasaki, Plenum Press, New York, 1996.
- [12] M. Kuroda, K. Ori, Y. Mimaki, Steroids 2006, 71, 199.
- [13] M. J. Ahn, C. Y. Kim, K. D. Yoon, M. Y. Ryu, J. H. Cheong, Y. W. Chin, J. Kim, J. Nat. Prod. 2006, 69, 360.
- [14] Y. Mimaki, M. Kuroda, A. Ide, A. Kameyama, A. Yokosuka, Y. Sashida, *Phytochemistry* 1999, 50, 805.
- [15] Y. Mimaki, M. Kuroda, A. Kameyama, A. Yokosuka, Y. Sashida, J. Nat. Prod. 1998, 61, 1279.
- [16] Y. Mimaki, M. Kuroda, O. Nakamura, Y. Sashida, J. Nat. Prod. 1997, 60, 592.
- [17] Y. Mimaki, T. Inoue, M. Kuroda, Y. Sashida, Phytochemistry 1996, 43, 1325.
- [18] Y. Takaashi, Y. Mimaki, M. Kuroda, Y. Sashida, T. Nikaido, T. Ohmoto, Tetrahedron 1995, 51, 2281.
- [19] T. Asano, T. Murayama, Y. Hirai, J. Shoji, Chem. Pharm. Bull. 1993, 41, 566.

Received April 24, 2008